Broadband light trapping based on periodically textured ZnO thin films.
نویسندگان
چکیده
Transparent conductive front electrodes (TCFEs) deployed in photovoltaic devices have been extensively studied for their significance in transporting carriers, coupling and trapping the incident photons in high-performing solar cells. The trade-off between the light-transmission, electrical, and scattering properties for TCFEs to achieve a broadband improvement in light absorption in solar cells while maintaining a high electrical performance has become the key issue to be tackled. In this paper, we employ self-assembled polystyrene (PS) spheres based on a sauna-like method as a template, followed by a double-layer deposition and then successfully fabricate highly-transparent, well-conductive, and large-scale periodically-textured ZnO TCFEs with broadband light trapping properties. A sheet resistance below 15 Ω sq(-1) was achieved for the periodically-textured ZnO TCFEs, with a concomitant average transmission of 81% (including the glass substrate) in the 400-1100 nm spectral range, a haze improvement in a broadband spectral range, and a wider scattering angular domain. The proposed approach affords a promising alternative method to prepare periodically-textured TCFEs, which are essential for many optoelectronic device semiconductors, such as photovoltaic and display applications.
منابع مشابه
Absorption enhancement in ultra-thin textured AlGaAs films
We have studied light randomization and the absorption enhancement in textured ultra-thin Al x Ga 1~x As films, with a thickness corresponding to a few optical wavelengths. A correlation between the degree of light randomization and trapping, with the scale length of the texturization geometry was found. The observed absorption enhancement corresponds to 90% of the best possible theoretical val...
متن کاملDMMP Sensing Performance of Undoped and Al Doped Nanocrystalline ZnO Thin Films Prepared by Ultrasonic Atomization and Pyrolysis Method
Highly textured undoped (pure) and Al doped ZnO nanocrystalline thin films prepared by ultrasonic atomization and pyrolysis method are reported in this paper. ZnCl2 water solution was converted into fine mist by ultrasonic atomizer (Gapusol 9001 RBI Meylan, France). The mist was pyrolyzed on the glass substrates in horizontal quartz reactor placed in furnace. The Structural and microstructural ...
متن کاملNanostructured as-deposited indium tin oxide thin films for broadband antireflection and light trapping.
Indium tin oxide (ITO) thin films were sputter-deposited at ambient temperature on a glass-like substrate that was periodically nanostructured by UV nanoimprint lithography. Cross gratings of the corrugated and conformal ITO, with different periods and modulation depths, were tailored to exhibit light trapping or antireflection properties at specific spectral windows by combined optical simulat...
متن کاملHigh Photocatalytic Performance in the Photodegradation of MB Dye of Photocatalytic Efficiency of ZnO/Fe3O4 and TiO2/Fe3O4 Under Visible Light Irradiation
Zinc Oxide (ZnO) nanorods and titanium dioxide (TiO2) nanostructures thin films were prepared onto glass substrates by the chemical bath deposition (CBD) method. The ZnO was structured as nanorods (NRs) while TiO2 was formed as nanoflowers plate as confirmed by Field-Emission Scanning Electron Microscope (FESEM) images. The ZnO/Fe3O4 and TiO2/Fe3O4 nanostructures thin films were prepared v...
متن کاملDiffraction and absorption enhancement from textured back reflectors of thin film solar cells
We study light scattering and absorption in thin film solar cells, using a model system of a sinusoidally textured silver reflector and dielectric layers of ZnO and amorphous silicon. Experimental results are compared to a theoretical model based on a Rayleigh expansion. Taking into account the explicit interface profile, the expansion converges fast and can be truncated typically after three o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 21 شماره
صفحات -
تاریخ انتشار 2015